Four ways of solving quadratic equations—worked examples
Method 1 - Solving Graphically

Solve \(x^2 + 2x - 8 = 0 \)

Step 1 - Create a table of values to calculate coordinates you can then use to plot the graph of \(y = x^2 + 2x - 8 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^2)</td>
<td>25</td>
<td>16</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
</tr>
<tr>
<td>(2x)</td>
<td>-10</td>
<td>-8</td>
<td>-6</td>
<td>-4</td>
<td>-2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>-8</td>
</tr>
<tr>
<td>(y = x^2 + 2x - 8)</td>
<td>7</td>
<td>0</td>
<td>-5</td>
<td>-8</td>
<td>-9</td>
<td>-8</td>
<td>-5</td>
<td>0</td>
<td>7</td>
<td>16</td>
<td>27</td>
</tr>
<tr>
<td>((x,y))</td>
<td>(-5,7)</td>
<td>(-4,0)</td>
<td>(-3,-5)</td>
<td>(-2,-8)</td>
<td>(-1,-9)</td>
<td>(0,-8)</td>
<td>(1,-5)</td>
<td>(2,0)</td>
<td>(3,7)</td>
<td>(4,16)</td>
<td>(5,27)</td>
</tr>
</tbody>
</table>

Step 2 - Plot the graph of \(y = x^2 + 2x - 8 \) using the coordinates calculated in your table of values

Step 3 - Read off the graph the \(x \) values where it crosses the \(x \) axis (the \(y = 0 \) line). These are your solutions

Solutions \(x = -4 \) or 2
Method 2 - Solving By Factorising

Solve \(x^2 + 2x - 8 = 0 \)

Step 1 - factorise \(x^2 + 2x - 8 \) by putting it into double brackets

\[x^2 + 2x - 8 = (x + 4)(x - 2) = 0 \]

Remember, the numbers inside the brackets have to ADD to make 2 and MULTIPLY to make -8

Step 2 - find which values of \(x \) make each bracket equal to zero. These are your solutions

\((x + 4)(x - 2) = 0 \)

If were \(x = -4 \) we’d have...

\[(-4 + 4)(-4 - 2) = 0 \]

\[(0)(-6) = 0 \]

So \(x = -4 \) must be one solution

If were \(x = 2 \) we’d have...

\[(2 + 4)(2 - 2) = 0 \]

\[(6)(0) = 0 \]

So \(x = 2 \) must be the other solution

Solutions \(x = -4 \) or \(2 \)
Method 3- Solving By Using The Quadratic Formula

Solve \(x^2 + 2x - 8 = 0 \)

Step 1- get the values of a, b and c to use in the formula

\[ax^2 + bx + c = 0 \]
\[x^2 + 2x - 8 = 0 \]

Therefore
\[a = 1, \ b = 2, \ c = -8 \]

Step 2- substitute these values for a, b and c into the quadratic formula and go on to simplify and solve for x

\[x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a} \]
\[x = \frac{-2 \pm \sqrt{(2)^2 - ((4)(1)(-8))}}{2(1)} \]
\[x = \frac{-2 \pm \sqrt{4 - (-32))}}{2} \]
\[x = \frac{-2 \pm \sqrt{36}}{2} \]
\[x = \frac{-2 \pm 6}{2} \]
\[x = \frac{-2 - 6}{2} \quad \text{or} \quad x = \frac{-2 + 6}{2} \]

Solutions \(x = -4 \) or \(2 \)
Method 4- Solving By Completing The Square

Solve \(x^2 + 2x - 8 = 0 \)

Step 1- find the completed square form of \(x^2 + 2x - 8 \)

\(x^2 + 2x - 8 \)

Halve the coefficient of \(x \) (which here is 2) and add to \(x \) in a bracket squared

\((x + 1)^2\)

Expand out the bracket

\((x + 1)^2 = x^2 + 2x + 1\)

Subtract the 1 from both sides

\((x + 1)^2 - 1 = x^2 + 2x\)

Now substitute this back into \(x^2 + 2x - 8 \) for the first two terms

\(x^2 + 2x - 8 = (x + 1)^2 - 1 - 8 = 0\)

\((x + 1)^2 - 9 = 0\)

Step 2- solve this quadratic equation for \(x \)

\((x + 1)^2 - 9 = 0\)

Add 9 to both sides

\((x + 1)^2 = 9\)

Square root both sides

\(x + 1 = \pm 3\)

Subtract 1 from both sides

\(x = -1 \pm 3\)

\(x = -1 - 3 \quad \text{or} \quad x = -1 + 3\)

Solutions \(x = -4 \) or \(2 \)